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The form and the velocity of solitary, or indefinitely long, waves

in a single liquid have been examined experimentally by Scott

Russell and mathematically by Boussinesq and Rayleigh. The
much wider problem of the possible aperiodic wave forms at the

common boundary of two superposed liquids does not seem to have

received similar treatment. Those who have treated the subject

of waves of finite height at the surface of separation of two liquids

have dealt rather with the case of periodic waves, for which a

different method is suitable. (Priestly, Camb. Phil. Soc. Proc., 1910 ;

Lamb, ibid., 1922 ;
Kolchine, Math . Ann., 1927-8.)

The discussion here given follows the method used by J. H.

Michell in unpublished work.

The motion is supposed two-dimensional, and will be treated as

steady by choice of an origin of coordinates moving at the rate of

the wave-form. The axis of % is taken horizontal and the axis of y
directed upwards. The independent variables are changed from

'fjto*, \p where \j/ is the stream function for the motion. This

simplifies the treatment of the conditions over the boundaries, the

coordinate ij/ being constant over each of them. The dependent

variable to be found in terms of x and
\f/

is now y, for which, there-

fore, a differential equation must be found. When y is found the

form of a boundary is given in Cartesian coordinates by ascribing

the corresponding constant value to i)/.

In carrying out the process of approximation we take as the

general mathematical characteristic of the long-wrave motion that

the variation of a quantity specifying it (in particular, the gradient

of the wave form)
,
in a distance equal to the depth of either liquid,

is a small fraction of the quantity itself. Thus, if we take the unit

of length as of the order of magnitude of the depth of either liquid,

the second derivative d 2y/dx% is to be a small fraction of dyjdx, and

so for higher derivatives. The assumption is to include the small-

ness of dyjdx itself. The general discussion terminates in the

expression of the gradient dyjdx of the wrave form in terms of y.

I have considered the conditions under which the gradient takes

the factor form appropriate to either a crested or an inverted

(trough) wave form. The expression of x in terms of y in general

involves elliptic integrals of the third kind. W here the undisturb-

ed depth of the low’er liquid is small we may find an approximate



166 Frances E. Allan:

equation involving an elliptic integral of the first kind only to deter-
mine the form of the symmetric wave. I have dealt, finally, with
ajcase of asymmetric wave (bore) where the gradient-equation for
the form can be integrated without further approximation.

The Differential Equation for y.

In terms of independent variables y, the corresponding com-
ponents of velocity are given by

u — —dif/dy,

V— dlfr/dX,

and the vorticity by
to — d^ipjdx^ -f- d^ip/dy^.

When the independent variables x
, \pt are introduced we have

v=m
\9x/y const.

and

Also

dy

9x

u

9y
9

when y is a function of x and ip,

9yjx const.

^ywhen ip and x are the independent variables.

9\p

\9x)

9v 9y

= (
9v

\
_fffp 9x

:)y const. \9x/'l' const. 9y ’

9ip

and 9u
/9u\ _ 9\p

\9y)x const.
— ’

9\p

Therefore, as a function of x and <p,

9v 9y 9u
9v 9\p 9x 9ip

W ~ 9x
"

dy 9y
9\p 9ip

Whence, substituting for u and v,

f
&sy

.. _ \ Vx*
9y 9 2y
9x 9x9\p

- _L -

'9fy 9y
9x9\p 9 x

(
9y\ 2

)
dxjj2 \3x)

1

1

*>y
y

9\p

(9yV
\9xp/ j

T
(9y)

2

^ V9xp/ 0 J

dij/2
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that is,

— CJ
(9yY= d*y(dyy_ 2 9y 9y 9*y_ f ,,(9yy\ 9*y
\9\pj 9x2 \9 1/r/ dx 9 iff 9x9xfr^~\ ^\9x) 1 9$*

Therefore for irrotational motion, where w=0, we have

9y 9y 9 2
y

9x 9\f/ 9 x 9ip
+

To investigate a type of irrotational waves we must now find an
approximate solution of this equation which will satisfy also the
boundary conditions of the problem.

J. H. Michell has used this process as an alternative method of
determining the well-known results for the infinitesimal and solitary
long waves at the free upper surface of a liquid. The method
applies equally well to problems on superposed liquids, and I have
used it to find the equation to the form of the wave of finite height
and wave length as far as the terms of the sixth order in the wave
height.

The question to be considered here, however, is the form of the
long wave at the boundary between two liquids in relative motion,
the whole being confined between parallel planes at a distance h
apart.

Let y—0, y=h be the fixed horizontal planes between which the
liquids lie. Let 1^=0 aty =0, \l/=a aty=h and ip=c at the interface
of the liquids. Finally, let p , p be the densities of the lower and
upper liquids and U, V their respective “undisturbed” velocities.

At the first step in the approximate solution of the differential

equation (1) for y, we neglect the first two terms as of the second
order and the equation then reduces to

*y=o.
9ifr

'

2

On integration, this gives, for the lower liquid.

(
2
)

y = #> (3)

where rj is a function of x. (There is no term independent of ^
since y=0 when ^=0.)

Substituting the value of y given by (3) in the second order
terms of (1), and integrating again, we find

-%!))=* <•>

and putting y=rj\j/ in the second order terms of (4), we obtain

Using the result
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and its consequence

vx!/== ^y +Uy^y 2y
&y }

9xj/ ~ \ 9% 2 J
9x J

we can write (5) in the form

J ^ 9x 2 y9v}) VP
(6)

For the upper liquid, when we integrate the equation 9 2yj9
ip
2 =0‘

we get

y-h— nty-a), (7)

since y=h when x// =a.

Following the same steps as in the case of the lower liquid we
get the equation

-
*) (gy }

= (t - “)% <»>

Since the pressure must be continuous across the interface, we
deduce from Bernoulli's pressure equation the result

^_^2 = (A _ 2gy)(p _A (9)

for points on the interface, where q and q' are the velocities in the
lower and upper liquids respectively at the point considered, and
A is some constant.

But

and ip — c, at the interface, so from (6) we find that at the interface

;{>+*>gv
d_*y

dx2

and in a similar way we find

*(£)*}a f2 _ {C^JlY
H

(y - h) 2

Hence (9) becomes

pc 2
_ p'(c - a) 2

, 2 fpc
2
_ p'(c -a) 2

\ 9
2y

y
2

(
y-h

)

2 s
\

y

(y - h) ]9% 2

(
10

)

(11)
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_ i jpc
2

P'{c-a)
2
\ (9y\

2

(y-h) 2 )\9x) -(A ~ 2gy)(p-P')> (
12

)

and this is the differential equation for the,form of the interface.

We may write it

pc 2
_ p(c - a) 2

i fpc 2
_p

,(c-a) 2
)
d (dy\*

y
2

(y-h )

2 3
t y y-h )dy\dx/

i
(pc 2 p(c - a) 2

\ (dv\ 2

-ny-XT^WfKdx) = (
a -2^Kp-a m

that is,

(14)
Integrating this we obtain

(15>
where D is a constant of integration.

Thus

(dy\ 2 _ -<! D+By - 3g(p—p)y
2

y y(y—h)+3Pc 2
(y — h) -3p'(c—a) 2y

'd%/ po 2
(y - h)— P {c - a) 2y

(16)
where 3A (p— p')=B.

This is the expression found by J. H. Michell for the gradient.
We now assume that this expression will factorize in such a manner
as to give the desired wave form, and then consider the further
conditions which will make such a form possible. That is, we
suppose

(dy\ 2 _ -Sg{p-p)(y-k)*(y-k
1)(y-ki )

\dx) pc 2
(y -h) — P'(c - a) 2y ' '

This makes dyfdx— 0 and d 2y/dx% = 0 when y= k; and dy/dx= 0
when y= kv and when y=k 2 .

Thus with this form the condition that the surface may be
horizontal wheny=&, is satisfied.

Now for (16) to be equivalent to (17) we must have, by equating
coefficients of y,

< 18 >

3g{p-p’)i %kk1k 2+k2
(k 1 -{-kt)

= -m+z\ Pc
2 -p(c-a) 2

y, ..(i9>

-Zg{p-p')\ k 2+ '2k{k1+k i)+k lk 2
[-=D-BA (20)

sg(p-p)i 2k+kt+k 2 [
=B + 3gh(p-p'), (21)

and from these equations (18)-(21) we deduce :

—

k +k
p(c-a) 2

1 8"^(rp) “ (h-k) 2
g(P-p')

+ h
’ (

22 ),
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and k 1k 2 =
pc 2h

k2g(p- Py
so that kv k

2
are the roots of the equation

pc 2 p'(c-a )
2

(
23

)

a2-jh
k 2

g(P - p) [h - k) *g(p - p) > ^k 2
g (P - p)

pc 2h
7\=0* -(24)

We therefore have

2k1= k+ -
, f

2
-- P'(c

- a
)

2
_

k 2g(p-p

)

(h—kfg{p-p

)

- v/lu Pc2 _ p'(c-a) 2

|
2
_ 4pc%

k 2
g(p -p) (h—k) 2

g(p - p’)J k 2g(p-p)’

2k,=h + - .

Pfc-a)2
. _

k 2g{p~p) (h-k)2g(p- p’)

j_ , / a._ F̂
2

_ p'(c-a
)
2

\
2_ 4pC

2h
Vi

(h-k) 2g(p- Py k 2g(p- Py
We may write

^=U2 and
Rr

(c ci)
2
_ y2

(h — k)2

since U is the velocity at infinity of the undisturbed lower liquid
ofjdepth k, and V is the velocity at infinity of the undisturbed
upper liquid of depth (h-k).

If we also write p = Xp and V2 =pXJ2 we have :

—

2k i
— h -f-

2k 2 =h+

U 2

S(l-A)

U2

g(

4AU2

g( 1-A)

(I -A)

Necessary Conditions for such a Wave.

We have put the equation for the gradient into the form

(dy\
2 %( 1 - *)(y - k)2(y - k ±)(y ~ k 2 )

\lx/ ~ \J\k 2h- \ k 2 ~\p{h-k) 2
yy]

‘

Now the denominator may be written k2 (h -y

)

-fA^u, (h - k) 2y and
y is less than h at all points on the interface. Therefore the denomi-
nator is always positive. Hence, assuming Xel (i.e., pep), we
must have y-k± and y - k2 of the same sign, to make dyjdx real.

But y lies between k and either kj or k
2 ,

since k, klt and k2 are
the turning values of y. Therefore, either

(i) keyekxeki*
or (n)k>y>ki>kv

These alternatives represent
(i) a crested wave,

or (ii) an inverted wave.
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There is no wave for a value of k between kx and k2 .

Thus, for values of k between 0 and k * there is a crested wave,
and for values of k between k2 and h there is an inverted wave.
Lamb has treated the infinitesimal wave at the interface between

two liquids (see Lamb's Hydrodynamics, Arts. 231-234), and if

in Lamb's result we make the wave length tend to infinity, we
find, as we should expect, that the two heights at which infinitesimal

long waves are possible are k
x
and k

2
.

Now, since kY
will be the height of the crest when a crested wave

exists and k 2
will be the depth of the lower liquid at the trough in

the case of an inverted wave, it will be necessary for kx and k%

to be real if there is to be a wave form at all. Therefore, referring

to the equation (24), we deduce the condition

( TJ 2(I-V.)) 2 4hU 2

g{ i-A) 1 <^TTa)-

Approximation-Method for High Waves.

If we take k very small we find approximately

_ r y(y — %k)(y — k
1)(y - k2)

y
= C(y-2k)(y-kJ(y-k&

for values of y near the crest, where C is a known constant,

makes
dy

{y -Vk){y - k t)(y -k 2)

This

Hence we can find an approximate form for the wave in terms
of an elliptic integral when the wave is near its greatest^height.

The Asymmetric Long Wave.

There is, however, a type of long wave whose form can be deter-

mined from the differential equation without further approximation.

This is the wave which we get on putting kx=k2 . Its differential

equation is

© 2__ 3g(l - \)(y - k) 2(k 1 -y)
2

- U\k 2h- k 2 -^(h-k )
2

and therefore wheny=&, or y — k^ dy/dx= 0, and d*y/dx2= 0.

This means that the wave has no crests but rises gradually,

through an infinite horizontal distance from y=k to y=k1 . The
motion is here of the nature of a “bore."

Since kx and are the roots of equation (24), the condition that

kx should be equal to k% is

S pc

2

p'(c-fl) 2
, 7„!

2 V 2*

lh*g(p - p)
- [h - k)*g(p - p')

+n$ ~g(p - p')h21 (
25

)
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that is,

( U 2 V 2A 4U%
~g(l-V‘ (26)

This gives

2 (U 2 — XV 2
)
2

=° <27 >

and the roots of this are always real, since (U 2+AV2
)

2>(U 2 — AV2
)

2
.

This means that for any given pair of values of the velocities U, V,
of the currents, there are two possible values of h, the distance
apart of the horizontal boundaries

;
they are given by

;>=^rZT)(U ± /AV)2 (28)

If we regard equation (26) as an equation for V in terms of h and U
we find

|

v
I

= U±y^(I - X )
(29)

v A

When condition (26) is satisfied, we have, from (22)

r U 2 V 2A >

k x -k.2-j\h +^, _
—g(i — X)J > (30 )

and on substituting for V from equation (29) we deduce

: ' <31)

The positive sign with the root in (29) would give

1 V gh{ I -A)

and we consider, therefore, only the negative sign. That is, we take

AV 2 - U a

1
1

~

j

2

=u
*(rr

1
)

8

Now, returning to the equation for
(dyjdx)

2
,
these results give

(dvidx)
2 = 1

(
y-ky^-y) 2

i yi**) u* jpn
^ k2 - (h—k) 2

(i -h/kj) 2
Yy]

_3g(l-A)V (y-mh-y) 2

U2h \k2k 2 - \
kx

2-(h-k) 2(h-ki)
2

'j-y/h]

= 3(y-knkx -y)
2

.

[k2kx
2~

-J
k2k 2 -{h-k) 2(h~ki)

2
}- y/h]
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Three cases now arise, depending on whether
(i) kkx= (h—k)(h—

k

x),

(ii) kk x7> \h— k) (h - kj,

(iii) kk^yi— fytfi — k i).

We shall now consider these separately.

(i) Here we have kkx = (h—k)(h — k
x )

and, therefore, k-\-kt -h.
This means that the highest and lowest levels of the wave are

equidistant from the mean height hj2 of the liquids.

In this case

(W 3(y-k 2
)(k 1 -y 2

)

\dx) ~ k 2
ki

2

and therefore

dy_ _ Vs
dx kk-y

(y-k^h-y)

where y lies between & and
On integrating, if we choose the origin so that the constant of

integration is zero, we find

Vi
kk x

x k+ky

k x
— k

artanh

k-\-k x

y—r~
— h

Now changing over to a horizontal axis along the mean level, so

we find the equation to the wave form is

2/

that y'=y 2

w '2
3*- artanh v^

that is, y’ =a tanh mx,

where a_ kx k

m _^3/l 1

\k v
(ii) Consider now the case — ^(h— k^.

Here
3(^-^) 2

(^i-y)
aw =[^v- ^ k^~(h-knh-k,)

2
}•>»/*]

a^y-kYik.-yY
P-y
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where

Now, since kk^ty—k^h—ki),
therefore h<.k+kv
and therefore h — k^k-^ and h—k^k.

k*k 2h
But p -tfkf-th-kYih-ktf

h

{h-mh-k.Y
1 _

k*k*

= =

—

7x
> where O<0<1.

1 — u

Therefore

>k.

Now — — 1 ^P2—y therefore
dy * (y-fy^-y)

(Al _£)a* =/V^ ^ ^f^Zldy

which is the equation to the wave form in this second case,

(iii) If kk±*<(h — k)(h—k^),

where
(h~-k)*(h-kd*-k*kf

and

Therefore
dx__ f Vfi

2+y
dy~* (y-k)ikx-yY
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Therefore

(k1
-k)ax = 2yk1+p2 ai-tarrh +^-2JY+FP arcoth^+^a

.
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